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THE COMPACT MUON SOLENOID (CMS) DETECTOR AT LHC
CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter : 15.0 m Pixel (100x150 pm) ~16m* ~66M channels
Overall length :28.7m Microstrips (80x180 um) ~200m? ~9.6M channels
Magneticfield :3.8T

SUPERCONDUCTING SOLENOID
Niobjum titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels



OBJECTIVES

* Apply recent progress in Machine Learning techniques regarding automation
of DQM scrutiny for HCAL

* To focus on the Online DQM.
* To compare the performance of different ML algorithms.

* To compare fully supervised vs semi-supervised approach.

* Impact the current workflow, make it more efficient and can guarantee that the

data is useful for physics analysis.



CHALLENGE

* Make sure detector behaves well to perform sensible data analysis.

* Reduce man power to discriminate good and bad datq, spot problems,

save time examining hundreds of histograms.
* By building intelligence to analyze datq, raise alarms, quick feedback.

* Implementing the best architecture for neural networks

* Underfitting - Too simple and not able to learn

* Qverfitting - Too complex and learns very specific and/or unnecessary features

* There is no rule of thumb

* Many, many, many...... possible combinations.



WHAT IS DATA QUALITY MONITORING (DQM)?

* Two kinds of workflows: | —
* Online DQM ‘”:Jul‘j“ -
Y |
* Provides feedback of live data taking. /[ ............... 20":_“?“5 - [[pfun - Analysis
onditions -  |Regis A
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* After data taking

* Responsible for bookkeeping and certifying the final data with fine tfime granularity.



HYPOTHESIS AND PROJECT QUERIES

Queries

* Can we make an algorithm that identifies anomalies in the data flow?

Hypothesis

* We can develop a ML algorithm that takes the images as data and
determine whether or not an error is occurring.

Rationale

* Since this algorithm takes images as inputs it can learn to compare the
images given with a baseline and correctly identify patterns and
deviations from the baseline.



TOOLS AND DATA PROCESSING . l.

* Working env: python Jupyter notebook

* Keras (with Tensorflow as backend) and Scikit-learn

* Creation of a model

* Train and test its performance

* The input data consists of occupancy maps

* one map for each luminosity section

* Used 2017 good data and generate bad data artificially



IMAGE ANALYSIS TERMINOLOGY

* Hoft - image with noisy (red) channels

* Dead - image with inactive (blue) channels

* Good - regular images that are certified for analysis
* Model - an ML algorithm's structure

* Loss - number that represents distance from target value



IMAGES AND READOUT CHANNELS USED AS INPUTS FOR THE ML ALGORITHM
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70

* Supervised and Semi-Supervised Learning
* 5x5 problematic region with random location

* 5x5 (readout channels) problematic region with fixed location
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SUPERVISED LEARNING

Loss
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HOT GOOD

DEAD

SEMI SUPERVISED LEARNING

Distance

Reconstruction
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* Trained only on good images

* Expected 1o see better reconstruction
for good images and a much different
reconstruction for bad images.

* Bad images have 5x5 bad regions

* Hot

 Dead

* Images have been normalized

* this architecture seems to perform best
for us.
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ERROR DISTRIBUTION PER IMAGE CLASS
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WHAT'S NEXT?
1 @

v

Original o ~, Learned
mushroom : representation

* Can we make it work with Encode st

*Why and exactly what is it

learning?

something more realistic?
* 1x1 bad region (channel)

* Can it identify what values should be
expected after each lumi-section?

* Move from artificial bad data to real

cases of bad data (in progress)
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BACKUP



HOW TO AUTOMATE THE DATA QUALITY CHECKS?
USE MACHINE LEARNING!

*|t's everywhere now!

/" RARELY
BREAKS
| DowN

* Al Learning

* Self-driving cars
* How do Google/Facebook know what you want?

* Face/Handwriting Recognition

GOES oN
STRIKE

*In our case everything is reduced to a
classification problem

* Anomaly Detection
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Machine Learning libraries

SCIKIT-LEARN KERAS
* Pre-defined models * Make your own models
* Logistic Regression * A bit sophisticated
* MLP * Only for making NN

* Not much control over the model’s * Neural Networks

architecture * Deep Convolutional

, * Best with image recognition
*Very useful for testing performance

17



Input

INPUT

Neural Network

iIncluding connections

(called weights)
between neurons

Adjust
weights

How to train a model

Target

Compare

HIDDEN

calculated: 0.69

30

Gradient Descent

The “Learning” in Machine Learning.

Update the values of X (punish) it when itis wrong.

X=X -—nV(X)

X: weights or biases

n: Learning Rate (typically 0.01 to 0.001)

Jw)

N  The rate at which our network leams. This can change over time with
methods such as Adam, Adagrad etc. o (hyperparameter)

V(x): Gradient of X

We seek to update the weights and biases by a value indicating how “off”

they were from their target.

Gradients naturally have increasing slope, so we put a negative in front of

it to go downwards

Descending with step coefficient 0.005 (iteration 50)
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10t

fix) = o sin(3)

Start (2.53.7)
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-30
1

5 B 7

30

20¢

10t

-30
1

Inittal

weight ™\

/ Gradient

Global cost minimum
—— J (W)

Stanng
- Poim

toration 3

\' heraton &

Descending with step coefficient 0.05 (iteration 50)
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"Non-deep" feedforward Deep neural network
neural network

hidden layer . hidden layer 1 hidden layer 2 hidden layer 3
input layer

input layer

output layer output layer

b & &
OO R X
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HOW A DEEP NEURAL NETWORK SEES

“Audi A7”

Image source: “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks" ICML 2009 & Comm. ACM 2024)
Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Ng.



SAMPLE IMAGES TO STUDY
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model

model.
model.
model.
-add(MaxPeoling2D (pool size=(2,2)))

model
model
model
model
model

model

model

model.
model.

model.
model.

model.

model.

model.

NEW ARCH.

= Sequential ()

add{Conv2D (10, kernel size=(2, 2), strides=(1, 1),input shape=input shape))
add (BatchNormalization ())
add (Activation ('relu'))

(

-add (ConvZDi(8; kermel size=(3, 3),strides—(1, 1}))
.add (BatchNormalization())

.add (Activation('relu'))

.add (MaxPooling2D (pool size=(2,2)))

-add(CenviD (8, kernel size=(1,1)))
model.

add (BatchNormalization())

.add (Activation('relu'))

addi(Dreopouii(025)")
add (Flatten())

add (Dense (8))
add (BatchNormalization())
add (Activation('relu'))

add (Dense (3, activation='softmax'))
compile (loss='categorical crossentropy',

optimizer="'adam', #Adam (lr=1e-3),
metrics=['accuracy'])
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input_1: InputLayer /_(_> conv2d_4: Conv2D

A
A R ‘ H I | E ‘ | l | R E conv2d_1: Conv2D batch_normalization_4: BatchNormalization
A
batch_normalization_1: BatchNormalization activation_4: Activation
input img = Input(shape=(input shape)) # adapt this if using 'channels first
Y
x = Conv2D(86, (3, 3), padding='same') (input_ img) activation_l: Activation up_sampling2d_1: UpSampling2D
X = BatchNormalization() (x)
X = Activation('relu') (x) Y
X = MaxPooling2D( (2, 2), padding='same') (x) i pooling2d:1: MixPooTing2D conv2d_5: Conv2D
X = Conv2D(64, (3, 3), padding='same') (x)
X = BatchNormalization() (x)
x = Rctivation('relu') (x) conv2d 2: Conv2D batch_normalization_5: BatchNormalization
X = MaxPooling2D((2, 2), padding='same') (x) -
X = Conv2D(32, (3, 3), padding='same') (x)
X = BatchNormalization() (x) y — )
X = Activation('relu') (x) batch_normalization_2: BatchNormalization activation_5: Activation
encoded = MaxPooling2D( (2, 2), padding='same') (x)
A
# at this point the representation is (4, 4, 8) i.e. 128-dimensional activation_2: Activation up_sampling2d_2: UpSampling2D
X = Conv2D(32, (3, 3), padding='same') (encoded) v
x = BatchNormalization() (x) max_pooling2d_2: MaxPooling2D conv2d_6: Conv2D
X = Activation('relu') (x)
x = UpSampling2D( (2, 2)) (x) !
x = Conv12£ (64, . (3, 3), (§>E(td;iing= 'same') (x) comybil e Sl batch_normalization_6: BatchNormalization
X = BatchNormalization X e =
X = Activation('relu') (x)
X = UpSampling2D((2, 2)) (x) v — —
X = Conv2D(86, (3, 3), padding='same') (x) batch_normalization_3: BatchNormalization activation_6: Activation
X = BatchNormalization() (x)
x = Activation('relu') (x) A 4
x = UpSampling2D((2, 2)) (x) activation_3: Activation up_sampling2d_3: UpSampling2D
decoded = Conv2D(1l, (3, 3), activation='sigmoid', padding='same') (x)
v T

autoenceder = Model (input_img, deccded)
autoencoder.compile (optimizer='adadelta', loss='mse')

max_pooling2d_3: MaxPooling2D conv2d_7: Conv2D




Auto-Encoder
ARCHITECTURE

Input Output
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* The bottleneck structures

work using dimensionality
reduction.

*\We are interested in

seeing the features
that are learned at the
bottleneck stage of the
AE after a successful
reconstruction.

*\We can use the

reconstruction loss as a
discriminant

24



REMARKS

* Slight improvement in the performance overall
* This is still a toy model with very specific examples
* Has not been tested with actual data

* Shows potential but there is room for improvement
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* With this project I've noticed

* There are many parameters to consider (architecture, nodes, optimizers)

* There is no rule that let's you know where to start or how to develop the correct
model

* Thereis a lot of trial and error.

* You have to spend more time building the model than tuning the parameters.

* There have been many other versions of the architectures shown.

* All show similar patterns for results
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USED MODELS

For the models in the supervised approach:

* Lossis categorical cross entropy

For the more complex models

* Optimizer is Adam or other adaptive optimizers with
similar results
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